Отечественный и зарубежный опыт показывает, что перспективное направление в строительной индустрии - применение фибробетонных конструкций различного назначения.
Фибробетон, как и традиционный бетон, представляет собой композиционный материал, включающий дополнительно распределенную в объеме фибровую арматуру. Дисперсное фибровое армирование позволяет в большой степени компенсировать главные недостатки бетона - низкую прочность при растяжении и хрупкость разрушения.
Фибробетон имеет в несколько раз более высокую прочность при растяжении и на срез, ударную и усталостную прочность, трещиностойкость и вязкость разрушения, морозостойкость, водонепроницаемость, сопротивление кавитации, жаропрочность и пожаростойкость. По показателю работы разрушения фибробетон может в 15-20 раз превосходить бетон. Это обеспечивает его высокую технико-экономическую эффективность при применении в строительных конструкциях и их ремонте.
Свойства фибробетона как композиционного материала определяются свойствами составляющих его компонентов. В определенной степени важнейший компонент - фибра (стальная или неметаллическая). Основные характеристики материалов, используемых в настоящее время для изготовления фибры, приведены в таблице.
Сопротивление различным воздействиям у фибробетонов в несколько раз выше, чем у обычного бетона.
Главными показателями свойств фибробетонов можно считать следующие:
- прочность при сжатии, осевом растяжении, растяжении при изгибе;
- начальный модуль деформаций;
- морозостойкость;
- водонепроницаемость;
- истираемость;
- ударную прочность (вязкость).
Важнейшая характеристика фибробетона - прочность на растяжение - является не только прямой характеристикой материала, но и косвенной, и отражает его сопротивление другим воздействиям, а также долговечность.
Другая важная характеристика фибробетона - ударная прочность (вязкость разрушения), которая в 3-5 раз превышает ударную прочность обычного бетона.
Экспериментально-теоретические исследования физико-механических свойств фибробетонов и опыт их применения позволили выявить эффективную номенклатуру конструкций, сооружений и изделий из них.
Установлены следующие области рационального применения фибробетонов:
- монолитные конструкции и сооружения - автомобильные дороги, перекладка покрытия, промышленные полы, выравнивающие полы, мостовые настилы, ирригационные каналы, взрыво - и взломоустойчивые сооружения, водоотбойные дамбы, огнезащитная штукатурка, емкости для воды и других жидкостей, обделки тоннелей, пространственные покрытия и сооружения, оборонные сооружения, ремонт монолитных конструкций полов, дорог и др.;
- сборные элементы и конструкции - железнодорожные шпалы, трубопроводы, склепы, балки, ступени, стеновые панели, кровельные панели и черепица, модули плавающих доков, морские сооружения, взрыво- и взломоустойчивые конструкции, плиты аэродромных, дорожных, тротуарных покрытий и креплений каналов, карнизные элементы мостов, сваи, шпунт, обогревательные элементы, элементы пространственных покрытий и сооружений, уличная фурнитура.
Практически все вышеуказанные конструкции из фибробетона широко применяются за рубежом, имеется положительный опыт их эффективного использования и в отечественном строительстве. Конструкции могут изготовляться как с фибровым, так и с комбинированным армированием, когда имеется фибра и стержневая или проволочная арматура.
Низкое сопротивление растяжению, которое характерно для каменных материалов, - наиболее существенный недостаток, снижающий эффективность использования бетона в конструкциях. Ввиду сложной макроструктуры сопротивление растяжению - определяющий фактор и при других видах напряженного состояния бетона.
Достигаемое фибровым армированием увеличение отношения пределов прочности при растяжении и сжатии (Rbt/Rc) представляет собой средство повышения эффективности бетона как конструкционного материала. Учитывая относительно высокую стоимость и дефицитность волокон, этот показатель решит вопрос о конкурентоспособности фибробетонов по сравнению с другими видами армированных бетонов. Имеются мнения, что для этого потребуется достижение величины Rbt/Rc = 0,5 - 0,6. Практически такое соотношение прочностей возможно только при дисперсном фибровом армировании бетона-матрицы.
Интегральные свойства фибробетона, как и любого композита, обусловливаются свойствами его компонентов (фибры и бетона-матрицы), а также наличием и степенью их совместной работы. В фибробетоне такая работа обеспечивается за счет сцепления и анкеровки фибры в бетоне.
Основные характеристики волокон для армирования композитов
Тип волокна |
Плотностьр, кг/см3 |
Прочность на растяжение Rt, МПа |
Удельная прочность R/p, 106 см |
Модуль упругости при растяжении Е, МПа |
Удельный модуль упругости Е/р, 108 см |
Металлы: |
алюминий |
0,00269 |
63,3 |
2,36 |
74 520 |
2,733 |
титан |
0,00471 |
196,8 |
4,18 |
117 400 |
2,493 |
сталь |
0,00781 |
421,8 |
5,4 |
210 000 |
2,689 |
бериллий |
0,00186 |
175,8 |
9,47 |
309 300 |
16,666 |
Неорганические вещества: |
стекло Е |
0,00255 |
3515 |
13,8 |
73 820 |
2,897 |
стекло S |
0,00249 |
4920 |
19,74 |
87 890 |
3,525 |
углерод |
0,00175 |
250 - 350 |
14,3 - 20 |
200 000 - 250 000 |
11,4 - 14,3 |
высокопрочный углерод |
0,00195 |
200 - 250 |
10,3 - 13 |
350 000 - 380 000 |
17,9 - 19,5 |
бор |
0,00258 |
351,5 |
13,65 |
421 800 |
16,374 |
Органические вещества: |
квебра (PRD49) |
0,002 |
170 - 225 |
8,5 - 11,3 |
13 300 |
6,65 |
За последние годы в НИИЖБ разработана новая перспективная технология получения высокопрочных удобоукладываемых бетонов. Она превосходит уровень мировых стандартов и основана на применении комплексного модификатора бетона марки МБ-01 в виде порошка на органоминеральной основе, включающей микрокремнезем, суперпластификатор и регулятор твердения бетона.
Экспериментально-теоретические исследования, проведенные в институте, показали, что модифицированный высокопрочный бетон - наиболее приемлемая матрица для фибробетона с современной фиброй различных видов.
В основу перспективных разработок следует положить принципы создания фибробетонов нового поколения.
Для получения фибробетона с высокими эксплуатационными характеристиками и долговечностью необходимо выполнить следующее:
- достигнуть технологической совместимости фибры и бетона-матрицы (высокая однородность распределения фибры по объему композита; иметь необходимое количество растворной части бетона для размещения в ней фибры и обеспечения ее анкеровки, а также достаточную удобоукладываемость фибробетонной смеси из условий технологии производства изделий, конструкций или возведения сооружений);
- обеспечить коррозионную стойкость фибры в среде бетона-матрицы и требуемую долговечность получаемого фибробетона;
- создать максимальное заанкеривание фибры в бетоне-матрице с целью наиболее эффективного использования ее прочностных свойств;
- выбрать оптимальное сочетание агрегатного состояния (вида), прочности и деформативности фибры и бетона-матрицы для получения наиболее эффективного по эксплуатационным свойствам композита (фибробетона) на их основе.
С учетом выполнения этих условий наиболее перспективно для создания высокоэффективных фибробетонов нового поколения применение высокопрочных модифицированных бетонов на основе комплексных органоминеральных модификаторов типа МБ-01 и эффективной стальной фибры (типа "Харекс", "Драмикс"), щелочестойкой стеклянной (типа СЦ-6 или "CemFil"), базальтовой или полипропиленовой фибры оптимального агрегатного состояния.
В настоящее время имеются практически все возможности для создания высокопрочных фибробетонов нового поколения на основе отечественных материалов. Наличие современных эффективных видов фибры позволяет упростить ее введение и перемешивание в бетонной смеси, что, в свою очередь, дает возможность в большей степени использовать технологическое оборудование, применяемое для обычных бетонов. При этом могут быть получены и использованы фибробетонные смеси высокой подвижности.
Модифицированные высокопрочные мелкозернистые бетоны, обладая сверхнизкой проницаемостью (W20), обеспечивают высокую коррозионную стойкость фибры и долговечность фибробетона, а также ускоренное нарастание прочности. Последнее особенно важно для монолитного строительства.
Учитывая сложившиеся условия и мировой опыт, целесообразно ускорить разработки в области технологии и расчета фибробетонов, более широко применять фибробетонные конструкции при проектировании объектов строительства.
Литература
- Железобетон в XXI веке: Состояние и перспективы развития бетона и железобетона в России / Госстрой России, НИИЖБ. М., 2001.
- ВСН 56-97. Проектирование и основные положения технологий производства фибробетонных конструкций.
- Рекомендации по проектированию и изготовлению сталефибро-бетонных конструкций / НИИЖБ, ЛенЗНИИЭП, ЦНИИпромзданий. М., 1987.
- Hannat J. Fibre cements and fiber concretes. New York, 1998.
- Magu Madar A. Glass fibre reinforced cement. London, 1991.
- Proceedings of the 2-nd Asia - Pacific speciality conference on fibre reinforced concrete. Singapore. Aug. 1999.
|